
LIBLINEAR is a simple package for solving large-sca le regularized
linear classification. It currently supports L2-reg ularized logistic
regression/L2-loss support vector classification/L1 -loss support 
vector
classification, and L1-regularized L2-loss support vector 
classification/
logistic regression. This document explains the usa ge of LIBLINEAR.

To get started, please read the ``Quick Start'' sec tion first.
For developers, please check the ``Library Usage'' section to learn
how to integrate LIBLINEAR in your software.
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When to use LIBLINEAR but not LIBSVM
====================================

There are some large data for which with/without no nlinear mappings
gives similar performances.  Without using kernels,  one can
efficiently train a much larger set via a linear cl assifier.  These
data usually have a large number of features. Docum ent classification
is an example.

Warning: While generally liblinear is very fast, it s default solver
may be slow under certain situations (e.g., data no t scaled or C is
large). See Appendix B of our SVM guide about how t o handle such
cases.
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guid e.pdf

Warning: If you are a beginner and your data sets a re not large, you
should consider LIBSVM first.

LIBSVM page:
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Quick Start
===========

See the section ``Installation'' for installing LIB LINEAR.

After installation, there are programs `train' and `predict' for
training and testing, respectively.

About the data format, please check the README file  of LIBSVM. Note
that feature index must start from 1 (but not 0).

A sample classification data included in this packa ge is 
`heart_scale'.

Type `train heart_scale', and the program will read  the training
data and output the model file `heart_scale.model'.  If you have a 
test



set called heart_scale.t, then type `predict heart_ scale.t
heart_scale.model output' to see the prediction acc uracy. The 
`output'
file contains the predicted class labels.

For more information about `train' and `predict', s ee the sections
`train' Usage and `predict' Usage.

To obtain good performances, sometimes one needs to  scale the
data. Please check the program `svm-scale' of LIBSV M. For large and
sparse data, use `-l 0' to keep the sparsity.

Installation
============

On Unix systems, type `make' to build the `train' a nd `predict'
programs. Run them without arguments to show the us ages.

On other systems, consult `Makefile' to build them (e.g., see
'Building Windows binaries' in this file) or use th e pre-built
binaries (Windows binaries are in the directory `wi ndows').

This software uses some level-1 BLAS subroutines. T he needed 
functions are
included in this package.  If a BLAS library is ava ilable on your
machine, you may use it by modifying the Makefile: Unmark the 
following line

        #LIBS ?= -lblas

and mark

        LIBS ?= blas/blas.a

`train' Usage
=============

Usage: train [options] training_set_file [model_fil e]
options:
-s type : set type of solver (default 1)

0 -- L2-regularized logistic regression (primal)
1 -- L2-regularized L2-loss support vector classifi cation 

(dual)
2 -- L2-regularized L2-loss support vector classifi cation 

(primal)
3 -- L2-regularized L1-loss support vector classifi cation 

(dual)
4 -- multi-class support vector classification by C rammer and 

Singer
5 -- L1-regularized L2-loss support vector classifi cation
6 -- L1-regularized logistic regression
7 -- L2-regularized logistic regression (dual)

-c cost : set the parameter C (default 1)
-e epsilon : set tolerance of termination criterion

-s 0 and 2
|f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,
where f is the primal function and pos/neg are # of
positive/negative data (default 0.01)

-s 1, 3, 4 and 7
Dual maximal violation <= eps; similar to libsvm (d efault 

0.1)
-s 5 and 6

|f'(w)|_inf <= eps*min(pos,neg)/l*|f'(w0)|_inf,
where f is the primal function (default 0.01)

-B bias : if bias >= 0, instance x becomes [x; bias ]; if < 0, no bias 
term added (default -1)



-wi weight: weights adjust the parameter C of diffe rent classes (see 
README for details)
-v n: n-fold cross validation mode
-q : quiet mode (no outputs)

Option -v randomly splits the data into n parts and  calculates cross
validation accuracy on them.

Formulations:

For L2-regularized logistic regression (-s 0), we s olve

min_w w^Tw/2 + C \sum log(1 + exp(-y_i w^Tx_i))

For L2-regularized L2-loss SVC dual (-s 1), we solv e

min_alpha  0.5(alpha^T (Q + I/2/C) alpha) - e^T alp ha
    s.t.   0 <= alpha_i,

For L2-regularized L2-loss SVC (-s 2), we solve

min_w w^Tw/2 + C \sum max(0, 1- y_i w^Tx_i)^2

For L2-regularized L1-loss SVC dual (-s 3), we solv e

min_alpha  0.5(alpha^T Q alpha) - e^T alpha
    s.t.   0 <= alpha_i <= C,

For L1-regularized L2-loss SVC (-s 5), we solve

min_w \sum |w_j| + C \sum max(0, 1- y_i w^Tx_i)^2

For L1-regularized logistic regression (-s 6), we s olve

min_w \sum |w_j| + C \sum log(1 + exp(-y_i w^Tx_i))

where

Q is a matrix with Q_ij = y_i y_j x_i^T x_j.

For L2-regularized logistic regression (-s 7), we s olve

min_alpha  0.5(alpha^T Q alpha) + \sum alpha_i*log( alpha_i) + \sum 
(C-alpha_i)*log(C-alpha_i) - a constant
    s.t.   0 <= alpha_i <= C,

If bias >= 0, w becomes [w; w_{n+1}] and x becomes [x; bias].

The primal-dual relationship implies that -s 1 and -s 2 give the same
model, and -s 0 and -s 7 give the same.

We implement 1-vs-the rest multi-class strategy. In  training i
vs. non_i, their C parameters are (weight from -wi) *C and C,
respectively. If there are only two classes, we tra in only one
model. Thus weight1*C vs. weight2*C is used. See ex amples below.

We also implement multi-class SVM by Crammer and Si nger (-s 4):

min_{w_m, \xi_i}  0.5 \sum_m ||w_m||^2 + C \sum_i \ xi_i
    s.t.  w^T_{y_i} x_i - w^T_m x_i >= \e^m_i - \xi _i \forall m,i

where e^m_i = 0 if y_i  = m,
      e^m_i = 1 if y_i != m,

Here we solve the dual problem:



min_{\alpha}  0.5 \sum_m ||w_m(\alpha)||^2 + \sum_i  \sum_m e^m_i 
alpha^m_i
    s.t.  \alpha^m_i <= C^m_i \forall m,i , \sum_m \alpha^m_i=0 
\forall i

where w_m(\alpha) = \sum_i \alpha^m_i x_i,
and C^m_i = C if m  = y_i,
    C^m_i = 0 if m != y_i.

`predict' Usage
===============

Usage: predict [options] test_file model_file outpu t_file
options:
-b probability_estimates: whether to predict probab ility estimates, 0 
or 1 (default 0)

Examples
========

> train data_file

Train linear SVM with L2-loss function.

> train -s 0 data_file

Train a logistic regression model.

> train -v 5 -e 0.001 data_file

Do five-fold cross-validation using L2-loss svm.
Use a smaller stopping tolerance 0.001 than the def ault
0.1 if you want more accurate solutions.

> train -c 10 -w1 2 -w2 5 -w3 2 four_class_data_fil e

Train four classifiers:
positive        negative        Cp      Cn
class 1         class 2,3,4.    20      10
class 2         class 1,3,4.    50      10
class 3         class 1,2,4.    20      10
class 4         class 1,2,3.    10      10

> train -c 10 -w3 1 -w2 5 two_class_data_file

If there are only two classes, we train ONE model.
The C values for the two classes are 10 and 50.

> predict -b 1 test_file data_file.model output_fil e

Output probability estimates (for logistic regressi on only).

Library Usage
=============

- Function: model* train(const struct problem *prob ,
                const struct parameter *param);

    This function constructs and returns a linear c lassification 
model
    according to the given training data and parame ters.

    struct problem describes the problem:

        struct problem
        {



            int l, n;
            int *y;
            struct feature_node **x;
            double bias;
        };

    where `l' is the number of training data. If bi as >= 0, we assume
    that one additional feature is added to the end  of each data
    instance. `n' is the number of feature (includi ng the bias 
feature
    if bias >= 0). `y' is an array containing the t arget values. And
    `x' is an array of pointers,
    each of which points to a sparse representation  (array of 
feature_node) of one
    training vector.

    For example, if we have the following training data:

    LABEL       ATTR1   ATTR2   ATTR3   ATTR4   ATT R5
    -----       -----   -----   -----   -----   --- --
    1           0       0.1     0.2     0       0
    2           0       0.1     0.3    -1.2     0
    1           0.4     0       0       0       0
    2           0       0.1     0       1.4     0.5
    3          -0.1    -0.2     0.1     1.1     0.1

    and bias = 1, then the components of problem ar e:

    l = 5
    n = 6

    y -> 1 2 1 2 3

    x -> [ ] -> (2,0.1) (3,0.2) (6,1) (-1,?)
         [ ] -> (2,0.1) (3,0.3) (4,-1.2) (6,1) (-1, ?)
         [ ] -> (1,0.4) (6,1) (-1,?)
         [ ] -> (2,0.1) (4,1.4) (5,0.5) (6,1) (-1,? )
         [ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) ( 5,0.1) (6,1) (-
1,?)

    struct parameter describes the parameters of a linear 
classification model:

        struct parameter
        {
                int solver_type;

                /* these are for training only */
                double eps;             /* stopping  criteria */
                double C;
                int nr_weight;
                int *weight_label;
                double* weight;
        };

    solver_type can be one of L2R_LR, L2R_L2LOSS_SV C_DUAL, 
L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC, 
L1R_LR, L2R_LR_DUAL.

    L2R_LR                L2-regularized logistic r egression (primal)
    L2R_L2LOSS_SVC_DUAL   L2-regularized L2-loss su pport vector 
classification (dual)
    L2R_L2LOSS_SVC        L2-regularized L2-loss su pport vector 
classification (primal)
    L2R_L1LOSS_SVC_DUAL   L2-regularized L1-loss su pport vector 
classification (dual)



    MCSVM_CS              multi-class support vecto r classification 
by Crammer and Singer
    L1R_L2LOSS_SVC        L1-regularized L2-loss su pport vector 
classification
    L1R_LR                L1-regularized logistic r egression
    L2R_LR_DUAL           L2-regularized logistic r egression (dual)

    C is the cost of constraints violation.
    eps is the stopping criterion.

    nr_weight, weight_label, and weight are used to  change the 
penalty
    for some classes (If the weight for a class is not changed, it is
    set to 1). This is useful for training classifi er using 
unbalanced
    input data or with asymmetric misclassification  cost.

    nr_weight is the number of elements in the arra y weight_label and
    weight. Each weight[i] corresponds to weight_la bel[i], meaning 
that
    the penalty of class weight_label[i] is scaled by a factor of 
weight[i].

    If you do not want to change penalty for any of  the classes,
    just set nr_weight to 0.

    *NOTE* To avoid wrong parameters, check_paramet er() should be
    called before train().

    struct model stores the model obtained from the  training 
procedure:

        struct model
        {
                struct parameter param;
                int nr_class;           /* number o f classes */
                int nr_feature;
                double *w;
                int *label;             /* label of  each class */
                double bias;
        };

     param describes the parameters used to obtain the model.

     nr_class and nr_feature are the number of clas ses and features, 
respectively.

     The nr_feature*nr_class array w gives feature weights. We use 
one
     against the rest for multi-class classificatio n, so each feature
     index corresponds to nr_class weight values. W eights are
     organized in the following way

     +------------------+------------------+------- -----+
     | nr_class weights | nr_class weights |  ...
     | for 1st feature  | for 2nd feature  |
     +------------------+------------------+------- -----+

     If bias >= 0, x becomes [x; bias]. The number of features is
     increased by one, so w is a (nr_feature+1)*nr_ class array. The
     value of bias is stored in the variable bias.

     The array label stores class labels.

- Function: void cross_validation(const problem *pr ob, const 
parameter *param, int nr_fold, int *target);



    This function conducts cross validation. Data a re separated to
    nr_fold folds. Under given parameters, sequenti ally each fold is
    validated using the model from training the rem aining. Predicted
    labels in the validation process are stored in the array called
    target.

    The format of prob is same as that for train().

- Function: int predict(const model *model_, const feature_node *x);

    This functions classifies a test vector using t he given
    model. The predicted label is returned.

- Function: int predict_values(const struct model * model_,
            const struct feature_node *x, double* d ec_values);

    This function gives nr_w decision values in the  array
    dec_values. nr_w is 1 if there are two classes except multi-class
    svm by Crammer and Singer (-s 4), and is the nu mber of classes 
otherwise.

    We implement one-vs-the rest multi-class strate gy (-s 0,1,2,3) 
and
    multi-class svm by Crammer and Singer (-s 4) fo r multi-class SVM.
    The class with the highest decision value is re turned.

- Function: int predict_probability(const struct mo del *model_,
            const struct feature_node *x, double* p rob_estimates);

    This function gives nr_class probability estima tes in the array
    prob_estimates. nr_class can be obtained from t he function
    get_nr_class. The class with the highest probab ility is
    returned. Currently, we support only the probab ility outputs of
    logistic regression.

- Function: int get_nr_feature(const model *model_) ;

    The function gives the number of attributes of the model.

- Function: int get_nr_class(const model *model_);

    The function gives the number of classes of the  model.

- Function: void get_labels(const model *model_, in t* label);

    This function outputs the name of labels into a n array called 
label.

- Function: const char *check_parameter(const struc t problem *prob,
            const struct parameter *param);

    This function checks whether the parameters are  within the 
feasible
    range of the problem. This function should be c alled before 
calling
    train() and cross_validation(). It returns NULL  if the
    parameters are feasible, otherwise an error mes sage is returned.

- Function: int save_model(const char *model_file_n ame,
            const struct model *model_);

    This function saves a model to a file; returns 0 on success, or -
1
    if an error occurs.



- Function: struct model *load_model(const char *mo del_file_name);

    This function returns a pointer to the model re ad from the file,
    or a null pointer if the model could not be loa ded.

- Function: void free_model_content(struct model *m odel_ptr);

    This function frees the memory used by the entr ies in a model 
structure.

- Function: void free_and_destroy_model(struct mode l 
**model_ptr_ptr);

    This function frees the memory used by a model and destroys the 
model
    structure.

- Function: void destroy_param(struct parameter *pa ram);

    This function frees the memory used by a parame ter set.

- Function: void set_print_string_function(void (*p rint_func)(const 
char *));

    Users can specify their output format by a func tion. Use
        set_print_string_function(NULL); 
    for default printing to stdout.

Building Windows Binaries
=========================

Windows binaries are in the directory `windows'. To  build them via
Visual C++, use the following steps:

1. Open a dos command box and change to liblinear d irectory. If
environment variables of VC++ have not been set, ty pe

"C:\Program Files\Microsoft Visual Studio 10.0\VC\b in\vcvars32.bat"

You may have to modify the above command according which version of
VC++ or where it is installed.

2. Type

nmake -f Makefile.win clean all

MATLAB/OCTAVE Interface
=======================

Please check the file README in the directory `matl ab'.

PYTHON Interface
================

Please check the file README in the directory `pyth on'.

Additional Information
======================

If you find LIBLINEAR helpful, please cite it as

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, an d C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classificatio n, Journal of
Machine Learning Research 9(2008), 1871-1874. Softw are available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear



For any questions and comments, please send your em ail to
cjlin@csie.ntu.edu.tw


