
--
--- MATLAB/OCTAVE interface of LIBLINEAR ---
--

Table of Contents
=================

- Introduction
- Installation
- Usage
- Returned Model Structure
- Other Utilities
- Examples
- Additional Information

Introduction
============

This tool provides a simple interface to LIBLINEAR, a library for
large-scale regularized linear classification
(http://www.csie.ntu.edu.tw/~cjlin/liblinear). It is very easy to
use
as the usage and the way of specifying parameters a re the same as
that
of LIBLINEAR.

Installation
============

On Unix systems, we recommend using GNU g++ as your compiler and type
'make' to build 'train.mexglx' and 'predict.mexglx' . Note that we
assume your MATLAB is installed in '/usr/local/matl ab', if not,
please
change MATLABDIR in Makefile.

Example:
 linux> make

To use Octave, type 'make octave':

Example:
 linux> make octave

On Windows systems, pre-built 'train.mexw64' and 'p redict.mexw64' are
included in this package (in ..\windows), so no nee d to conduct
installation unless you run 32 bit windows. If you have modified the
sources and would like to re-build the package, typ e 'mex -setup' in
MATLAB to choose a compiler for mex first. Then typ e 'make' to start
the installation.

Example:
 matlab> mex -setup
 (ps: MATLAB will show the following message s to setup default
compiler.)
 Please choose your compiler for building ex ternal interface
(MEX) files:
 Would you like mex to locate installed comp ilers [y]/n? y
 Select a compiler:
 [1] Microsoft Visual C/C++ 2005 in C:\Progr am Files\Microsoft
Visual Studio 8
 [0] None
 Compiler: 1
 Please verify your choices:
 Compiler: Microsoft Visual C/C++ 2005
 Location: C:\Program Files\Microsoft Visual Studio 8

 Are these correct?([y]/n): y

 matlab> make

For list of supported/compatible compilers for MATL AB, please check
the
following page:

http://www.mathworks.com/support/compilers/current_ release/

Usage
=====

matlab> model = train(training_label_vector, traini ng_instance_matrix
[,'liblinear_options', 'col']);

 -training_label_vector:
 An m by 1 vector of training labels. (t ype must be
double)
 -training_instance_matrix:
 An m by n matrix of m training instance s with n features.
 It must be a sparse matrix. (type must be double)
 -liblinear_options:
 A string of training options in the sam e format as that
of LIBLINEAR.
 -col:
 if 'col' is set, each column of trainin g_instance_matrix
is a data instance. Otherwise each row is a data in stance.

matlab> [predicted_label, accuracy, decision_values /prob_estimates] =
predict(testing_label_vector, testing_instance_matr ix, model [,
'liblinear_options', 'col']);

 -testing_label_vector:
 An m by 1 vector of prediction labels. If labels of test
 data are unknown, simply use any random values. (type
must be double)
 -testing_instance_matrix:
 An m by n matrix of m testing instances with n features.
 It must be a sparse matrix. (type must be double)
 -model:
 The output of train.
 -liblinear_options:
 A string of testing options in the same format as that of
LIBLINEAR.
 -col:
 if 'col' is set, each column of testing _instance_matrix
is a data instance. Otherwise each row is a data in stance.

Returned Model Structure
========================

The 'train' function returns a model which can be u sed for future
prediction. It is a structure and is organized as [Parameters,
nr_class,
nr_feature, bias, Label, w]:

 -Parameters: Parameters
 -nr_class: number of classes
 -nr_feature: number of features in training data (without
including the bias term)
 -bias: If >= 0, we assume one additional fe ature is added to
the end
 of each data instance.
 -Label: label of each class
 -w: a nr_w-by-n matrix for the weights, whe re n is nr_feature

 or nr_feature+1 depending on the existe nce of the bias
term.
 nr_w is 1 if nr_class=2 and -s is not 4 (i.e., not
 multi-class svm by Crammer and Singer). It is
 nr_class otherwise.

If the '-v' option is specified, cross validation i s conducted and
the
returned model is just a scalar: cross-validation a ccuracy.

Result of Prediction
====================

The function 'predict' has three outputs. The first one,
predicted_label, is a vector of predicted labels.
The second output is a scalar meaning accuracy.
The third is a matrix containing decision values or probability
estimates (if '-b 1' is specified). If k is the num ber of classes
and k' is the number of classifiers (k'=1 if k=2, o therwise k'=k),
for decision values,
each row includes results of k' binary linear class ifiers. For
probabilities,
each row contains k values indicating the probabili ty that the
testing instance is in
each class. Note that the order of classes here is the same as
'Label'
field in the model structure.

Other Utilities
===============

A matlab function libsvmread reads files in LIBSVM format:

[label_vector, instance_matrix] = libsvmread('data. txt');

Two outputs are labels and instances, which can the n be used as
inputs
of svmtrain or svmpredict.

A matlab function libsvmwrite writes Matlab matrix to a file in
LIBSVM format:

libsvmwrite('data.txt', label_vector, instance_matr ix]

The instance_matrix must be a sparse matrix. (type must be double)
For windows, `libsvmread.mexw64' and `libsvmwrite.m exw64' are ready
in
the directory `..\windows'.

These codes are prepared by Rong-En Fan and Kai-Wei Chang from
National
Taiwan University.

Examples
========

Train and test on the provided data heart_scale:

matlab> [heart_scale_label, heart_scale_inst] = lib svmread
('../heart_scale');
matlab> model = train(heart_scale_label, heart_scal e_inst, '-c 1');
matlab> [predict_label, accuracy, dec_values] = pre dict
(heart_scale_label, heart_scale_inst, model); % tes t the training
data

Note that for testing, you can put anything in the

testing_label_vector.

For probability estimates, you need '-b 1' for trai ning and testing:

matlab> [predict_label, accuracy, prob_estimates] = predict
(heart_scale_label, heart_scale_inst, model, '-b 1');

Additional Information
======================

Please cite LIBLINEAR as follows

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, an d C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classificatio n, Journal of
Machine Learning Research 9(2008), 1871-1874.Softwa re available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear

For any question, please contact Chih-Jen Lin
<cjlin@csie.ntu.edu.tw>.

