
LIBLINEAR is a simple package for solving large-sca le regularized
linear classification. It currently supports L2-reg ularized logistic
regression/L2-loss support vector classification/L1 -loss support
vector
classification, and L1-regularized L2-loss support vector
classification/
logistic regression. This document explains the usa ge of LIBLINEAR.

To get started, please read the ``Quick Start'' sec tion first.
For developers, please check the ``Library Usage'' section to learn
how to integrate LIBLINEAR in your software.

Table of Contents
=================

- When to use LIBLINEAR but not LIBSVM
- Quick Start
- Installation
- `train' Usage
- `predict' Usage
- Examples
- Library Usage
- Building Windows Binaries
- Additional Information
- MATLAB/OCTAVE interface
- PYTHON interface

When to use LIBLINEAR but not LIBSVM
====================================

There are some large data for which with/without no nlinear mappings
gives similar performances. Without using kernels, one can
efficiently train a much larger set via a linear cl assifier. These
data usually have a large number of features. Docum ent classification
is an example.

Warning: While generally liblinear is very fast, it s default solver
may be slow under certain situations (e.g., data no t scaled or C is
large). See Appendix B of our SVM guide about how t o handle such
cases.
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guid e.pdf

Warning: If you are a beginner and your data sets a re not large, you
should consider LIBSVM first.

LIBSVM page:
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Quick Start
===========

See the section ``Installation'' for installing LIB LINEAR.

After installation, there are programs `train' and `predict' for
training and testing, respectively.

About the data format, please check the README file of LIBSVM. Note
that feature index must start from 1 (but not 0).

A sample classification data included in this packa ge is
`heart_scale'.

Type `train heart_scale', and the program will read the training
data and output the model file `heart_scale.model'. If you have a
test

set called heart_scale.t, then type `predict heart_ scale.t
heart_scale.model output' to see the prediction acc uracy. The
`output'
file contains the predicted class labels.

For more information about `train' and `predict', s ee the sections
`train' Usage and `predict' Usage.

To obtain good performances, sometimes one needs to scale the
data. Please check the program `svm-scale' of LIBSV M. For large and
sparse data, use `-l 0' to keep the sparsity.

Installation
============

On Unix systems, type `make' to build the `train' a nd `predict'
programs. Run them without arguments to show the us ages.

On other systems, consult `Makefile' to build them (e.g., see
'Building Windows binaries' in this file) or use th e pre-built
binaries (Windows binaries are in the directory `wi ndows').

This software uses some level-1 BLAS subroutines. T he needed
functions are
included in this package. If a BLAS library is ava ilable on your
machine, you may use it by modifying the Makefile: Unmark the
following line

 #LIBS ?= -lblas

and mark

 LIBS ?= blas/blas.a

`train' Usage
=============

Usage: train [options] training_set_file [model_fil e]
options:
-s type : set type of solver (default 1)

0 -- L2-regularized logistic regression (primal)
1 -- L2-regularized L2-loss support vector classifi cation

(dual)
2 -- L2-regularized L2-loss support vector classifi cation

(primal)
3 -- L2-regularized L1-loss support vector classifi cation

(dual)
4 -- multi-class support vector classification by C rammer and

Singer
5 -- L1-regularized L2-loss support vector classifi cation
6 -- L1-regularized logistic regression
7 -- L2-regularized logistic regression (dual)

-c cost : set the parameter C (default 1)
-e epsilon : set tolerance of termination criterion

-s 0 and 2
|f'(w)|_2 <= eps*min(pos,neg)/l*|f'(w0)|_2,
where f is the primal function and pos/neg are # of
positive/negative data (default 0.01)

-s 1, 3, 4 and 7
Dual maximal violation <= eps; similar to libsvm (d efault

0.1)
-s 5 and 6

|f'(w)|_inf <= eps*min(pos,neg)/l*|f'(w0)|_inf,
where f is the primal function (default 0.01)

-B bias : if bias >= 0, instance x becomes [x; bias]; if < 0, no bias
term added (default -1)

-wi weight: weights adjust the parameter C of diffe rent classes (see
README for details)
-v n: n-fold cross validation mode
-q : quiet mode (no outputs)

Option -v randomly splits the data into n parts and calculates cross
validation accuracy on them.

Formulations:

For L2-regularized logistic regression (-s 0), we s olve

min_w w^Tw/2 + C \sum log(1 + exp(-y_i w^Tx_i))

For L2-regularized L2-loss SVC dual (-s 1), we solv e

min_alpha 0.5(alpha^T (Q + I/2/C) alpha) - e^T alp ha
 s.t. 0 <= alpha_i,

For L2-regularized L2-loss SVC (-s 2), we solve

min_w w^Tw/2 + C \sum max(0, 1- y_i w^Tx_i)^2

For L2-regularized L1-loss SVC dual (-s 3), we solv e

min_alpha 0.5(alpha^T Q alpha) - e^T alpha
 s.t. 0 <= alpha_i <= C,

For L1-regularized L2-loss SVC (-s 5), we solve

min_w \sum |w_j| + C \sum max(0, 1- y_i w^Tx_i)^2

For L1-regularized logistic regression (-s 6), we s olve

min_w \sum |w_j| + C \sum log(1 + exp(-y_i w^Tx_i))

where

Q is a matrix with Q_ij = y_i y_j x_i^T x_j.

For L2-regularized logistic regression (-s 7), we s olve

min_alpha 0.5(alpha^T Q alpha) + \sum alpha_i*log(alpha_i) + \sum
(C-alpha_i)*log(C-alpha_i) - a constant
 s.t. 0 <= alpha_i <= C,

If bias >= 0, w becomes [w; w_{n+1}] and x becomes [x; bias].

The primal-dual relationship implies that -s 1 and -s 2 give the same
model, and -s 0 and -s 7 give the same.

We implement 1-vs-the rest multi-class strategy. In training i
vs. non_i, their C parameters are (weight from -wi) *C and C,
respectively. If there are only two classes, we tra in only one
model. Thus weight1*C vs. weight2*C is used. See ex amples below.

We also implement multi-class SVM by Crammer and Si nger (-s 4):

min_{w_m, \xi_i} 0.5 \sum_m ||w_m||^2 + C \sum_i \ xi_i
 s.t. w^T_{y_i} x_i - w^T_m x_i >= \e^m_i - \xi _i \forall m,i

where e^m_i = 0 if y_i = m,
 e^m_i = 1 if y_i != m,

Here we solve the dual problem:

min_{\alpha} 0.5 \sum_m ||w_m(\alpha)||^2 + \sum_i \sum_m e^m_i
alpha^m_i
 s.t. \alpha^m_i <= C^m_i \forall m,i , \sum_m \alpha^m_i=0
\forall i

where w_m(\alpha) = \sum_i \alpha^m_i x_i,
and C^m_i = C if m = y_i,
 C^m_i = 0 if m != y_i.

`predict' Usage
===============

Usage: predict [options] test_file model_file outpu t_file
options:
-b probability_estimates: whether to predict probab ility estimates, 0
or 1 (default 0)

Examples
========

> train data_file

Train linear SVM with L2-loss function.

> train -s 0 data_file

Train a logistic regression model.

> train -v 5 -e 0.001 data_file

Do five-fold cross-validation using L2-loss svm.
Use a smaller stopping tolerance 0.001 than the def ault
0.1 if you want more accurate solutions.

> train -c 10 -w1 2 -w2 5 -w3 2 four_class_data_fil e

Train four classifiers:
positive negative Cp Cn
class 1 class 2,3,4. 20 10
class 2 class 1,3,4. 50 10
class 3 class 1,2,4. 20 10
class 4 class 1,2,3. 10 10

> train -c 10 -w3 1 -w2 5 two_class_data_file

If there are only two classes, we train ONE model.
The C values for the two classes are 10 and 50.

> predict -b 1 test_file data_file.model output_fil e

Output probability estimates (for logistic regressi on only).

Library Usage
=============

- Function: model* train(const struct problem *prob ,
 const struct parameter *param);

 This function constructs and returns a linear c lassification
model
 according to the given training data and parame ters.

 struct problem describes the problem:

 struct problem
 {

 int l, n;
 int *y;
 struct feature_node **x;
 double bias;
 };

 where `l' is the number of training data. If bi as >= 0, we assume
 that one additional feature is added to the end of each data
 instance. `n' is the number of feature (includi ng the bias
feature
 if bias >= 0). `y' is an array containing the t arget values. And
 `x' is an array of pointers,
 each of which points to a sparse representation (array of
feature_node) of one
 training vector.

 For example, if we have the following training data:

 LABEL ATTR1 ATTR2 ATTR3 ATTR4 ATT R5
 ----- ----- ----- ----- ----- --- --
 1 0 0.1 0.2 0 0
 2 0 0.1 0.3 -1.2 0
 1 0.4 0 0 0 0
 2 0 0.1 0 1.4 0.5
 3 -0.1 -0.2 0.1 1.1 0.1

 and bias = 1, then the components of problem ar e:

 l = 5
 n = 6

 y -> 1 2 1 2 3

 x -> [] -> (2,0.1) (3,0.2) (6,1) (-1,?)
 [] -> (2,0.1) (3,0.3) (4,-1.2) (6,1) (-1, ?)
 [] -> (1,0.4) (6,1) (-1,?)
 [] -> (2,0.1) (4,1.4) (5,0.5) (6,1) (-1,?)
 [] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (6,1) (-
1,?)

 struct parameter describes the parameters of a linear
classification model:

 struct parameter
 {
 int solver_type;

 /* these are for training only */
 double eps; /* stopping criteria */
 double C;
 int nr_weight;
 int *weight_label;
 double* weight;
 };

 solver_type can be one of L2R_LR, L2R_L2LOSS_SV C_DUAL,
L2R_L2LOSS_SVC, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L1R_L2LOSS_SVC,
L1R_LR, L2R_LR_DUAL.

 L2R_LR L2-regularized logistic r egression (primal)
 L2R_L2LOSS_SVC_DUAL L2-regularized L2-loss su pport vector
classification (dual)
 L2R_L2LOSS_SVC L2-regularized L2-loss su pport vector
classification (primal)
 L2R_L1LOSS_SVC_DUAL L2-regularized L1-loss su pport vector
classification (dual)

 MCSVM_CS multi-class support vecto r classification
by Crammer and Singer
 L1R_L2LOSS_SVC L1-regularized L2-loss su pport vector
classification
 L1R_LR L1-regularized logistic r egression
 L2R_LR_DUAL L2-regularized logistic r egression (dual)

 C is the cost of constraints violation.
 eps is the stopping criterion.

 nr_weight, weight_label, and weight are used to change the
penalty
 for some classes (If the weight for a class is not changed, it is
 set to 1). This is useful for training classifi er using
unbalanced
 input data or with asymmetric misclassification cost.

 nr_weight is the number of elements in the arra y weight_label and
 weight. Each weight[i] corresponds to weight_la bel[i], meaning
that
 the penalty of class weight_label[i] is scaled by a factor of
weight[i].

 If you do not want to change penalty for any of the classes,
 just set nr_weight to 0.

 NOTE To avoid wrong parameters, check_paramet er() should be
 called before train().

 struct model stores the model obtained from the training
procedure:

 struct model
 {
 struct parameter param;
 int nr_class; /* number o f classes */
 int nr_feature;
 double *w;
 int *label; /* label of each class */
 double bias;
 };

 param describes the parameters used to obtain the model.

 nr_class and nr_feature are the number of clas ses and features,
respectively.

 The nr_feature*nr_class array w gives feature weights. We use
one
 against the rest for multi-class classificatio n, so each feature
 index corresponds to nr_class weight values. W eights are
 organized in the following way

 +------------------+------------------+------- -----+
 | nr_class weights | nr_class weights | ...
 | for 1st feature | for 2nd feature |
 +------------------+------------------+------- -----+

 If bias >= 0, x becomes [x; bias]. The number of features is
 increased by one, so w is a (nr_feature+1)*nr_ class array. The
 value of bias is stored in the variable bias.

 The array label stores class labels.

- Function: void cross_validation(const problem *pr ob, const
parameter *param, int nr_fold, int *target);

 This function conducts cross validation. Data a re separated to
 nr_fold folds. Under given parameters, sequenti ally each fold is
 validated using the model from training the rem aining. Predicted
 labels in the validation process are stored in the array called
 target.

 The format of prob is same as that for train().

- Function: int predict(const model *model_, const feature_node *x);

 This functions classifies a test vector using t he given
 model. The predicted label is returned.

- Function: int predict_values(const struct model * model_,
 const struct feature_node *x, double* d ec_values);

 This function gives nr_w decision values in the array
 dec_values. nr_w is 1 if there are two classes except multi-class
 svm by Crammer and Singer (-s 4), and is the nu mber of classes
otherwise.

 We implement one-vs-the rest multi-class strate gy (-s 0,1,2,3)
and
 multi-class svm by Crammer and Singer (-s 4) fo r multi-class SVM.
 The class with the highest decision value is re turned.

- Function: int predict_probability(const struct mo del *model_,
 const struct feature_node *x, double* p rob_estimates);

 This function gives nr_class probability estima tes in the array
 prob_estimates. nr_class can be obtained from t he function
 get_nr_class. The class with the highest probab ility is
 returned. Currently, we support only the probab ility outputs of
 logistic regression.

- Function: int get_nr_feature(const model *model_) ;

 The function gives the number of attributes of the model.

- Function: int get_nr_class(const model *model_);

 The function gives the number of classes of the model.

- Function: void get_labels(const model *model_, in t* label);

 This function outputs the name of labels into a n array called
label.

- Function: const char *check_parameter(const struc t problem *prob,
 const struct parameter *param);

 This function checks whether the parameters are within the
feasible
 range of the problem. This function should be c alled before
calling
 train() and cross_validation(). It returns NULL if the
 parameters are feasible, otherwise an error mes sage is returned.

- Function: int save_model(const char *model_file_n ame,
 const struct model *model_);

 This function saves a model to a file; returns 0 on success, or -
1
 if an error occurs.

- Function: struct model *load_model(const char *mo del_file_name);

 This function returns a pointer to the model re ad from the file,
 or a null pointer if the model could not be loa ded.

- Function: void free_model_content(struct model *m odel_ptr);

 This function frees the memory used by the entr ies in a model
structure.

- Function: void free_and_destroy_model(struct mode l
**model_ptr_ptr);

 This function frees the memory used by a model and destroys the
model
 structure.

- Function: void destroy_param(struct parameter *pa ram);

 This function frees the memory used by a parame ter set.

- Function: void set_print_string_function(void (*p rint_func)(const
char *));

 Users can specify their output format by a func tion. Use
 set_print_string_function(NULL);
 for default printing to stdout.

Building Windows Binaries
=========================

Windows binaries are in the directory `windows'. To build them via
Visual C++, use the following steps:

1. Open a dos command box and change to liblinear d irectory. If
environment variables of VC++ have not been set, ty pe

"C:\Program Files\Microsoft Visual Studio 10.0\VC\b in\vcvars32.bat"

You may have to modify the above command according which version of
VC++ or where it is installed.

2. Type

nmake -f Makefile.win clean all

MATLAB/OCTAVE Interface
=======================

Please check the file README in the directory `matl ab'.

PYTHON Interface
================

Please check the file README in the directory `pyth on'.

Additional Information
======================

If you find LIBLINEAR helpful, please cite it as

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, an d C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classificatio n, Journal of
Machine Learning Research 9(2008), 1871-1874. Softw are available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear

For any questions and comments, please send your em ail to
cjlin@csie.ntu.edu.tw

